中国物联网行业门户,IOT资讯、企业及产品供求信息发布--新物联
新闻来源:新物联Newiot 整理       发布时间:2019/7/31 12:15:45       共计:9409 浏览

车联网(Internet of Vehicles)是物联网最重要的应用之一,主要是指:车辆以及车上的车载设备通过无线通信技术,通过信息平台、大数据分析、人工智能处理,从而对车辆进行有效利用和合理架控,从而达到安全、便利、健康和更有效的驾驶。车联网主要有以下特征:车联网能够为车与车之间、车与物之间的间距提供保障,降低车辆发生碰撞事故的几率;车联网可以帮助车主实时导航,并通过与其它车辆和网络系统的通信,提高交通运行的效率。在未来车联网也要往人工智能方向发展,可以实现辅助驾驶,甚至是无人驾驶,减轻人在驾驶过程中因为疲劳及人为因素引发的事故,从而降低交通事故率,保障驾驶安全。



一、车联网概述:
车联网(Internet of Vehicles)的概念源于物联网,即车辆物联网,是以行驶中的车辆为信息感知对象,借助新一代信息通信技术,实现车与X(即车与车、人、路、服务平台)之间的网络连接,提升车辆整体的智能驾驶水平,为用户提供安全、舒适、智能、高效的驾驶感受与交通服务,同时提高交通运行效率,提升社会交通服务的智能化水平。
车联网通过新一代信息通信技术,实现车与云平台、车与车、车与路、车与人、车内等全方位网络链接,主要实现了“三网融合”,即将车内网、车际网和车载移动互联网进行融合。车联网是利用传感技术感知车辆的状态信息,并借助无线通信网络与现代智能信息处理技术实现交通的智能化管理,以及交通信息服务的智能决策和车辆的智能化控制。
1、车与云平台间的通信是指车辆通过卫星无线通信或移动蜂窝等无线通信技术实现与车联网服务平台的信息传输,接受平台下达的控制指令,实时共享车辆数据。 
2、车与车间的通信是指车辆与车辆之间实现信息交流与信息共享,包括车辆位置、行驶速度等车辆状态信息,可用于判断道路车流状况。 
3、车与路间的通信是指借助地面道路固定通信设施实现车辆与道路间的信息交流,用于监测道路路面状况,引导车辆选择最佳行驶路径。
4、车与人间的通信是指用户可以通过Wi-Fi、蓝牙、蜂窝等无线通信手段与车辆进行信息沟通,使用户能通过对应的移动终端设备监测并控制车辆。

5、车内设备间的通信是指车辆内部各设备间的信息数据传输,用于对设备状态的实时检测与运行控制,建立数字化的车内控制系统。



二、车联网主要架构
1、车辆和车载系统。
车辆和车载系统是参与交通的每一辆汽车和车上的各种设备,通过这些传感器设备,车辆不仅可以实时地了解自己的位置、朝向、行驶距离、速度和加速度等车辆信息,还可以通过各种环境传感器感知外界环境的信息,包括温度、湿度、光线、距离等,不仅方便驾驶员及时了解车辆和信息,还可以对外界变化做出及时的反应。此外,这些传感器获取的信息还可以通过无线网络发送给周围的车辆、行人和道路,上传到车联网系统的云计算中心,加强了信息的共享能力。
2、车辆标识系统。
车辆上的若干标志标识和外界的标识识别设备构成了车辆标识系统,其中标志以RFID和图像识别系统为主。
3、路边设备系统。
路边设备系统会沿交通路网设置,一般会安装在交通热点地区、交叉路口或者高危险地区,通过采集通过特定地点的车流量,分析不同拥堵段的信息,给予交通参与者避免拥堵的若干建议。
4、信息通信网络系统。

有了若干信息之后,还需要信息通信系统对各种数据的传输,这是网络链路层的重要组成部分,目前车联网的通信系统以WIFI、移动网络、无线网络、蓝牙网络为主,车联网的大部分网络需求需要和网络运营商合作,以便和用户的手机随时连接。



三、车联网主要体系框架
车联网技术是在交通基础设备日益完善和车辆管理难度不断加大的背景下被提出的,到目前为止仍处于初步的研究探索阶段,但经过多年的发展,当前已基本形成了一套比较稳定的车联网技术体系结构。在车联网体系结构中,主要由三大层次结构组成,按照其层次由高到低分别是应用层、网络层和采集层。
1、应用层
应用层是车联网的最高层次,可以为联网用户提供各种车辆服务业务,从当前最广泛就业的业务内容来看,主要就是由全球定位系统取得车辆的实时位置数据,然后返回给车联网控制中心服务器,经网络层的处理后进入用户的车辆终端设备,终端设备对定位数据进行相应的分析处理后,可以为用户提供各种导航、通信、监控、定位等应用服务。
2、网络层
网络层主要功能是提供透明的信息传输服务,即实现对输入输出的数据的汇总、分析、加工和传输,一般由网络服务器以及WEB服务组成。GPS定位信号及车载传感器信号上传到后台服务中心,由服务器对数据进行统计的管理,为每辆车提供相应的业务,同时可以对数据进行联合分析,形成车与车之间的各种关系,成为局部车联网服务业务,为用户群提供高效、准确、及时的数据服务。
3、采集层

采集层负责数据的采集,它是由各种车载传感器完成的,包括车辆实时运行参数、道路环境参数以及预测参数等等,例如车速、方向、位置、里程、发动机转速、车内温度等等。所有采集到的数据将会上传到后台服务器进行统一的处理与分析,得到用户所需要的业务数据,为车联网提供可靠的数据支持。



四、车联网应用关键技术
1、射频识别技术
射频识别(radio frequency identification,RFID)技术是通过无线射频信号实现物体识别的一种技术,具有非接触、双向通信、自动识别等特征,对人体和物体均有较好的效果。RFID不但可以感知物体位置,还能感知物体的移动状态并进行跟踪。RFID定位法目前已广泛应用于智能交通领域,尤其是车联网技术中更是对RFID技术有强烈的依赖,成为车联网体系的基础性技术。RFID技术一般与服务器、数据库、云计算、近距离无线通信等技术结合使用,由大量的RFID通过物联网组成庞大的物体识别体系。
2、传感网络技术
车辆服务需要大量数据的支持,这些数据的原始来源正是由各类传感器进行采集。不同的传感器或大量的传感器通过采集系统组成一个庞大的数据采集系统,动态采集一切车联网服务所需要的原始数据,例如车辆位置、状态参数、交通信息等。当前传感器已由单个或几个传感器演化为由大量传感器组成的传感器网络,并且通能够根据不同的业务进行处性化定制。为服务器提供数据源,经过分析处理后作为各项业务数据为车辆提供优质服务。 
3、卫星定位技术
随着全球定位技术的发展,车联网的发展迎来了新的历史机遇,传统的GPS系统成为了车联网技术的重要技术基础,为车辆的定位和导航提供了高精度的可靠位置服务,成为车联网的核心业务之一。随着我国北斗导航系统的日益完善并投入使用,车联网技术又有了新的发展方向,并逐步实现向国产化、自主知识产权的时期过渡。北斗导航系统将成为我国车联网体系的核心技术之一,成为车联网核心技术自主研发的重要开端。
4、无线通信技术
传感网络采集的少量处理需要通信系统传输出云才能得到及时的处理和分析,分析后的数据也要经过通信网络的传输才能到达车辆终端设备。考虑到车辆的移动特性,车联网技术只能采用无线通信技术来进行数据传输,因此无线通信技术是车联网技术的核心组成部分之一。在各种无线传输技术的支持下,数据可以在服务器的控制下进行交换,实现业务数据的实时传输,并通过指令的传输实现对网内车辆的实时监测和控制。
5、大数据分析技术
大数据(Big Data)是指借助于计算机技术、互联网,捕捉到数量繁多、结构复杂的数据或信息的集合体。在计算机技术和网络技术的发展推动下,各种大数据处理方法已经开始得到广泛的应用。常见的大数据技术包括信息管理系统、分布式数据库、数据挖掘、类聚分析等,成为不断推动大数据在车联网中应用的强大驱动力。 
6、人工智能技术
人工智能(Artificial Intelligence)可以对大数据分析,然后进行研究、模拟、类比,对车辆行驶过程中可能出现的情况进行分析处理,通过人机交互等方式,达到车联网智能化。
7、标准及安全体系

车联网作为一个庞大的物联网应用系统,包含了大量的数据、处理过程和传输节点,其高效运行必须有一套统一的标准体系来规范,从而确保数据的真实性和完整性,完成各项业务的应用。标准化已成为车联网技术发展的迫切要求,也是一项复杂的管理技术。另外,车辆联网和获取服务本身也是为了更好地为车辆安全行驶提供保障,因此安全体系的建立也十分重要。能否根据当前车联网发展情况,建立一套高效的标准和安全体系,已经成为决定未来车联网技术发展的关键因素。



五、车联网主要应用领域
车联网是实现自动驾驶乃至无人驾驶的重要组成部分,也是未来智能交通系统的核心组成部分,将在以下几个方面发挥越来越重要的作用。
1、车辆安全方面:车联网可以通过提前预警、超速警告、逆行警告、红灯预警、行人预警等相关手段提醒驾驶员,也可通过紧急制动、禁止疲劳驾驶等措施有效降低交通事故的发生率,保障人员及车辆安全。
2、交通控制方面:将车端和交通信息及时发送到云端,进行智能交通管理,从而实时播报交通及事故情况,缓解交通堵塞,提高道路使用率。
3、信息服务方面:车联网为企业和个人提供方便快捷的信息服务,例如提供高精度电子地图和准确的道路导航。车企也可以通过收集和分析车辆行驶信息,了解车辆的使用状况和问题,确保用户行车安全。其他企业还可通过相关特定信息服务了解用户需求和兴趣,挖掘盈利点。
4、智慧城市与智能交通方面:以车联网为通信管理平台可以实现智能交通。例如交通信号灯智能控制、智慧停车、智能停车场管理、交通事故处理、公交车智能调度等方面都可以通过车联网实现。而随着交通的信息化和智能化,必然有助于智慧城市的构建。

六、国联网未来发展趋势
作为具有新生力量的车联网技术,其未来的发展趋势可能表现在以下几个方面:
1、石油能源短缺的现状与持续增加的车辆尾气排放量,将使人们的生存环境趋向恶劣。车联网在未来的车辆驾驶中得以应用,将能够以生态作为中心,实现生态出行。 
2、能够应用于安全驾驶、协同驾驶以及汽车活动安全等领域。
3、涉及交通智能化方面。
具体表现在:对已经得到确切定位的货物进行位置信息的跟踪,并为货物在供应链与物流链当中提供服务;同时,可以实现对车辆信息的实时传输,通过车辆传感器收集信息,并在云中心实施计算与分类处理,将不同类型的数据分类发放,使不同部门都能够掌握信息数据,通过得到的反馈数据实施交通智能调度。 
4、导航精确化。
在灵敏导航系统的运行下,车辆将能够即时获得系统指示,并会依据驾驶员的既往经验对导航路径实施精准计算,以此为驾驶员提供精准的导航指导。
5、整车硬件的联网化。
汽车电子电气系统正逐渐向集中式架构体系发展,未来的每一台汽车都将像一台智能手机,对应的也是应用软件、操作系统、芯片层、硬件层。应用软件可以基于唯一的操作系统和计算芯片开发,通过统一集中的ECU,控制多个硬件。汽车软件控制将更高效,并能像手机一样,实现OTA升级,从而实现对控制软件的持续优化,不断改善硬件性能体验。通过这种集中式的电气架构,整车硬件的运转情况就可以通过软件实现远程调校修改。
6、用车服务的线上化。
整车数字化时代的车联网,将极大地提高汽车用车服务的质量。线下付费的用车场景都将实现线上化,汽车的实时车况可以通过云端传输给服务商,车况的透明化将助力服务商为用户提供一系列主动式的服务,如代驾、停车场、加油站、违章查询代缴、充电桩收费、上门保养、上门洗车、UBI保险等等。这时候汽车成为流量出口,服务商有动力推销服务,线上高效快捷的服务体验也将吸引用户,从而大大促进用车服务的效率。
7、车联网功能服务方式的多样化。
整车数字化时代,每辆车的所有车况信息都可以在云端对应一个ID。通过ID的统一管理和适配开发,车联网功能将不局限于车机这一个交互渠道,可拓展到手机APP、微信小程序、智能穿戴设备、智能家居设备等多个交互设备,将极大地便利用户的用车体验,延长人车交互的频率和时间,改善交互体验,改善用车体验。另外通过分拆车联网功能,把有些对网速或运算能力要求高的功能分拆至车外如手机APP、智能穿戴设备等(但车机上应有的功能如导航什么的必须要保留),这样就对车载车联网硬件要求降低,从而覆盖更多的低端车型。通过大数据积累自学习,实现千人千面的交互服务方式。
8、助力无人驾驶技术发展。

随着整车联网能力的增强,智慧城市基础设施的进一步发展,自动驾驶感知和决策功能将从车上转移至道路基础设施,有助于单车成本下降,并且能通过区域内集中控制实现所有车辆的自动驾驶,提升交通效率与安全性。自动驾驶功能的商业模式也将有极大的创新应用,因为整车硬件的功能都可以通过云端开启关闭,同一个车型可以拥有一样的硬件,但通过软件限制区分不同的配置,允许用户在购车之后,再通过付费开启车上的硬件功能,使得“免费试用”的模式成为可能。这样既可以实现对消费者的推销,又能反向促进车企提供能足够吸引用户的自动驾驶软件体验。


随着5G的商用和物联网技术的发展,相信车联网及无人驾驶未来会有飞跃性的发展,为城市交通安全和人类健康贡献力量!


版权说明:
本网站凡注明“新物联Newiot 原创”的皆为本站原创文章,如需转载请注明出处!
本网转载皆注明出处,遵循行业规范,如发现作品内容版权或其它问题的,请与我们联系处理!
您可以扫描右侧微信二维码联系我们。
  • 车联网
  • 车联网概念
  • iov
  • iov概念
网站首页 关于我们 联系我们 合作联系 会员说明 新闻投稿 隐私协议 网站地图